Tuesday, September 6, 2011

.Net FrameWork

*What is .NET Framework?
The .NET Framework has two main components:
The common language runtime CLR and the .NET Framework class library.
You can think of the runtime as an agent that manages code at execution time, providing core services such as memory management, thread management, and remoting, while also enforcing strict type safety and other forms of code accuracy that ensure security and robustness.

*What is CLR, CTS, CLS?
The .NET Framework provides a runtime environment called the Common Language Runtime or CLR (similar to the Java Virtual Machine or JVM in Java), which handles the execution of code and provides useful services for the implementation of the program. CLR takes care of code management at program execution and provides various beneficial services such as memory management, thread management, security management, code verification, compilation, and other system services. The managed code that targets CLR benefits from useful features such as cross-language integration, cross-language exception handling, versioning, enhanced security, deployment support, and debugging.

*Common Type System (CTS) describes how types are declared, used and managed in the runtime and facilitates cross-language integration, type safety, and high performance code execution.
*Common Type System (CTS):
.NET also defines a Common Type System (CTS). Like CLS, CTS is also a set of standards. CTS defines the basic data types that IL understands. Each .NET compliant language should map its data types to these standard data types. This makes it possible for the 2 languages to communicate with each other by passing/receiving parameters to/from each other. For example, CTS defines a type Int32, an integral data type of 32 bits (4 bytes) which is mapped by C# through int and VB.Net through its Integer data type.

*The CLS is simply a specification that defines the rules to support language integration in such a way that programs written in any language, yet can interoperate with one another, taking full advantage of inheritance, polymorphism, exceptions, and other features. These rules and the specification are documented in the ECMA proposed standard document, "Partition I Architecture"

Earlier we used the term '.NET Compliant Language' and stated that all the .NET compliant languages can make use of CLR and FCL. But what makes a language '.NET compliant language'? The answer is Common Language Specification (CLS). Microsoft has released a small set of specification that each language should meet to qualify as a .NET Compliant Language. As IL is a very rich language, it is not necessary for a language to implement all the IL functionality, rather it meets the small subset of it, CLS, to qualify as a .NET compliant language, which is the reason why so many languages (procedural and OO) are now running under .Net umbrella. CLS basically addresses to language design issues and lays certain standards like there should be no global function declaration, no pointers, no multiple inheritance and things like that. The important point to note here is that if you keep your code within CLS boundary, your code is guaranteed to be usable in any other .Net language.

*Framework Class Library (FCL):
.NET Framework provides huge set of Framework (or Base) Class Library (FCL) for common, usual tasks. FCL contains thousands of classes to provide the access to Windows API and common functions like String Manipulation, Common Data Structures, IO, Streams, Threads, Security, Network Programming, Windows Programming, Web Programming, Data Access, etc. It is simply the largest standard library ever shipped with any development environment or programming language. The best part of this library is they follow extremely efficient OO design (design patterns) making their access and use very simple and predictable. You can use the classes in FCL in your program just as you use any other class and can even apply inheritance and polymorphism on these.

*What is MSIL, IL?
When compiling to managed code, the compiler translates your source code into Microsoft intermediate language (MSIL), which is a CPU-independent set of instructions that can be efficiently converted to native code. MSIL includes instructions for loading, storing, initializing, and calling methods on objects, as well as instructions for arithmetic and logical operations, control flow, direct memory access, exception handling, and other operations. Microsoft intermediate language (MSIL) is a language used as the output of a number of compilers and as the input to a just-in-time (JIT) compiler. The common language runtime includes a JIT compiler for converting MSIL to native code.

*What is JIT (just in time)
Before Microsoft intermediate language (MSIL) can be executed, it must be converted by a .NET Framework just-in-time (JIT) compiler to native code, which is CPU-specific code that runs on the same computer architecture as the JIT compiler.
Rather than using time and memory to convert all the MSIL in a portable executable (PE) file to native code, it converts the MSIL as it is needed during execution and stores the resulting native code so that it is accessible for subsequent calls.

*Just In Time Compilers (JITers):
When our IL compiled code needs to be executed,
CLR invokes JIT compilers which compile the IL code to native executable code (.exe or .dll) for the specific machine and OS.
JITers in many ways are different from traditional compilers as they, as their name suggests, compile the IL to native code only when desired e.g.,
 when a function is called, IL of function's body is converted to native code; just in time of need. 

So, the part of code that is not used by particular run is not converted to native code. If some IL code is converted to native code then the next time when its needed to be used, the CLR uses the same copy without re-compiling. So, if a program runs for sometime, then it won't have any just in time performance penalty. As JITers are aware of processor and OS exactly at runtime, they can optimize the code extremely efficiently resulting in very robust applications. Also, since JITer knows the exact current state of executable code, they can also optimize the code by in-lining small function calls (like replacing body of small function when its called in a loop, saving the function call time). Although, Microsoft stated that C# and .Net are not competing with languages like C++ in efficiency, speed of execution, JITers can make your code even faster than C++ code in some cases when program is run over extended period of time (like web-servers).

When the program is executed the CLR activates JIT compiler ,inturn this JIT converts the MSIL Code (Non Executable) to Native Code(Executable) on demand basis as each part of Program is needed

Types Of JIT Compilers are as stated below :
(1) PRE JIT
(2) ECONO JIT
(3) NORMALE JIT

(1) PRE JIT : It Compiles complete source code to native code In a single Compilation.
(2) ECONO JIT : It compiles only those methods that are called at Runtime.
(3) NORMALE JIT : It compiles only those methods that are called at Runtime and are stored in cache.When these methods called again they retrieve from cache.

I think default JIT is PRE Jit .

*Garbage Collector (GC):

CLR also contains Garbage Collector (GC) which runs in a low-priority thread and checks for un-referenced dynamically allocated memory space. If it finds some data that is no more referenced by any variable/reference, it re-claims it and returns the occupied memory back to the Operating System; so that it can be used by other programs as necessary. The presence of standard Garbage Collector frees the programmer from keeping track of dangling data.

No comments:

Post a Comment